![]() Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ реферат на тему: Forex. Мировой валютный рынок, технический анализ движения![]() охарактеризовать как бычью, так и медвежью модель одновременно. Обычно это фигура продолжения, если это не вершина. Как правило, является продолжением существующей тенденции после еще одной волны роста.
Рис.23
Вершина треугольника (то есть точка, в которой сходятся все линии тренда) часто соответствует моменту завершения (5) заключительной волны.
Двойные тройки
Рис.24
Правило чередования
Рис.25
Если волна (2) представляет собой простую модель коррекции (а) (в) (с), то волна (4) скорее всего, образует треугольник, и наоборот.
Числа Фибоначчи - математическая основа теории волн
Как признавал сам Элиот в своей работе "Законы природы", математической основой теории стала последовательность чисел, которую открыл (или, чтобы быть точнее, вновь открыл) Фибоначчи в XIII веке. В его честь открытую им последовательность стали называть "числами Фибоначчи".
Фибоначчи в свое время опубликовал три большие работы, самая знаменитая из которых называется "Liber Abaci". Благодаря этой книге Европа узнала индо-арабскую систему чисел, которая позднее вытеснила традиционные для того времени римские числа. Работы Фибоначчи имели огромное значение для последующего развития математики, физики, астрономии и техники. В "Liber Abaci" Фибоначчи приводит свою последовательность чисел как решение математической задачи - нахождение формулы размножения кроликов. Числовая последовательность такова: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 (далее до бесконечности). Последовательность Фибоначчи имеет весьма любопытные особенности, не последняя из которых - почти постоянная взаимосвязь между числами.
Сумма любых двух соседних чисел равна следующему числу в последовательности. Например: 3 + 5 = 8; 5 + 8 = 13 и т.д.
Отношение любого числа последовательности к следующему приближается к 0,618 (после первых четырех чисел). Например: 1: 1 = 1; 1: 2 = 0,5; 2: 3 = 0,67; 3: 5 = 0,6; 5: 8 = 0,625; 8: 13 = 0,615; 13: 21 = 0,619 и т.д. Обратите внимание, как значение соотношений колеблются вокруг величины 0,618, причем размах флуктуаций постепенно сужается; а также на величины: 1,00; 0,5; 0,67.
Отношение любого числа к предыдущему приблизительно равно 1,618 (величина обратная 0,618). Например: 13: 8 = 1,625; 21: 13 = 1,615; 34: 21 = 1,619. Чем выше числа, тем более они приближаются к величине 0,618 и 1,618.
Отношение любого числа к следующему за ним через одно приближается к 0,382, а к предшествующему через одно - 2,618. Например: 13: 34 = 0,382; 34: 13 = 2,615.
Последовательность Фибоначчи содержит и другие любопытные соотношения, или коэффициент, но те, которые мы только что привели - самые важные и известные. Как мы уже подчеркивали выше, на самом деле Фибоначчи не является первооткрывателем своей последовательности. Дело в том, что коэффициент 1,618 или 0,618 был известен еще древнегреческим и древнеегипетским математикам, которые называли его "золотым коэффициентом" или "золотым сечением". Его следы мы находим в музыке, изобразительном искусстве, архитектуре и биологии. Греки использовали принцип "золотого сечения" при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Свойства "золотого коэффициента" были хорошо известны Пифагору, Платону и Леонардо да Винчи.
Коэффициенты Фибоначчи и процентные отношения длины коррекции
Поскольку из трех импульсных волн растягивается только одна, две остальные равны по протяженности и времени завершения. Если растягивается пятая волна, волны 1 и 3 должны быть почти равны. При растяжении третьей волны более или менее равными
Если цена открытия оказывается в пределах прогноза ценового диапазона, то дневному трейдеру следует ожидать, что уровень сопротивления будет находиться на Max, а уровень поддержки - на Min. Если цена открытия вышла за пределы прогноза, то, скорее всего она уйдет в сторону прорыва. УПРАВЛЕНИЕ КАПИТАЛОМ И ТОРГОВАЯ ТАКТИКА Заключайте сделку в направлении промежуточной ![]() первая ... 4 5 6 7 8 9 10 Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ Внимание! Студенческий отдых и мегатусовка после сессии!
Рефераты и/или содержимое рефератов предназначено исключительно для ознакомления, без целей коммерческого использования. Все права в отношении рефератов и/или содержимого рефератов принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие или полученные в связи с использованием рефератов и/или содержимого рефератов.
|
Обратная связь. |