Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Горная порода - термодинамическая система

скачать реферат

которые могут обмениваться со средой энергией и веществом. Очень редкие закрытые системы, материально изолированные от внешней среды, но свободно обмениваются с ней энергией. Если некоторые параметры системы меняются со временем, то мы говорим, что в такой системе происходит процесс. Если система выведена из состояния равновесия и представлена самой себе, то согласно первому исходному положению термодинамики через некоторое время она снова придет к исходному равновесному состоянию. Этот процесс перехода системы из неравновесного состояния в равновесное состояние называется релаксацией, а промежуток времени, в течении которого система возвращается в исходное состояние равновесия, называется временем релаксации. Для разных процессов время релаксации различно: от 10-16 для установления равновесного давления в газе до нескольких лет при выравнивании концентрации в твердых сплавах. Процесс называется равновесным или квазистатическим, если все параметры системы меняются физически бесконечно медленно, так что система все время находится в равновесном состоянии. Вся термодинамическая система состоит из огромного числа частиц. Энергия этих непрерывно движущихся и взаимодействующих частиц называется энергией системы. Полная энергия системы разделяется на внешнюю и внутреннюю. Во внешнюю энергию входят энергия движения системы как целого и потенциальная энергия системы в поле сил. Вся остальная часть энергии системы называется её внутренней энергией. В термодинамике не рассматривается движение системы как целого и изменение её потенциальной энергии при таком движении, поэтому энергией системы является её внутренняя энергия. Внутренняя энергия является внутренним параметром и, следовательно, при равновесии зависит от внешних параметров: квазистатических изменений и от температуры. Зависимость внутренней энергии от температуры почти у всех встречающихся в окружающей нас природе систем такова, что с неограниченным ростом температуры внутренняя энергия также неограниченно растет. Это происходит потому, что каждая молекула или какой-либо другой элемент «обычной» термодинамической системы может иметь любое большое значение энергии. При взаимодействии термодинамической системы с окружающей средой происходит обмен энергией. При этом возможны два различных способа передачи энергии от системы к внешним телам. Первый способ передачи энергии, связан с изменением внешних параметров, называется работой, второй способ без изменения внешних параметров теплотой, а сам процесс передачи теплообменом. Второй способ возможен только при абсолютном нуле температуры. Количество энергии, переданное системой с изменением её внешних параметров, также называется работой, а не количеством работы, а количество энергии, переданное системе без изменения её внешних параметров количеством теплоты. Эти способы передачи энергии не являются равноценными, так как затрачиваемая работа может непосредственно пойти на увеличение другого вида энергии (электрической, магнитной, упругой, потенциальной энергии в поле и т.д.). Количество теплоты без предварительного преобразования в работу, может пойти только на увеличение внутренней энергии системы. Если система не обменивается с окружающими телами ни энергией, ни веществом, то она изолированная или замкнутая, но обмен энергии происходит только теплотой; если же система имеет обмен с внешним миром, то она открытая. Первое начало термодинамики связано с законом сохранения и превращения энергии, т.е. является частным выражением этого
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




закона и как многие общие законы природы устанавливаются опытным путем и носит эмпирический характер. Одним из доказательств справедливости закона сохранения энергии и первого начала термодинамики была экспериментально установленная Джоулем эквивалентность тепла и работы в круговых процессах. В химической термодинамике (минералогической) из понятия механической работы и работы вообще исключается изменение энергии тела вследствие его перемещения в пространстве. С точки зрения кинетической теории строения материи теплота представляет собой микрофизическую форму передачи энергии. Работа представляет собой макрофизическую форму передачи энергии. Изменение энергии определяется начальным и конечным состоянием системы и не зависит от характера протекания процесса. Иными словами кинетическая энергия есть функция состояния системы. Теплота и работа не являются параметрами состояния данной системы, они не могут присутствовать в ней в том или ином количестве. Они появляются при переходе из одного состояния в

другое. В случае постоянного давления изменения энтальпии тепла является экстенсивным параметром. Как и внутренняя энергия, энтальпия не зависит от пути протекания процесса и определяется параметрами начального и конечного состояния. Начало термодинамики устанавливает, что внутренняя энергия изменяется только под влиянием внешних воздействий окружающей среды. Теплота, подведенная к системе в изобарическом процессе, расходуется на изменение её энтальпии. Это свойство теплоты обнаружил Гесс, сформулировав закон, носящий его имя: тепловой эффект химической реакции не зависит от пути процесса, а определяется лишь состоянием конечных и исходных веществ. Тепловым эффектом химической реакции это есть количество теплоты выделяемой или поглощаемой теплоты при следующих условиях: 1. система совершает только работу расширения; 2. объем и давление постоянны; 3. температура исходных и конечных продуктов одинакова; 4. реакции протекают почти до конца.

Второе начало устанавливает направление протекания процесса, его глубину. Если система перешла из одного состояния в другое при постоянной температуре, получив (потеряв) некоторое количества, то изменение энтропии вводится другая. Свойства энтропии таковы, что в произвольных процессах (протекающих без внешнего воздействия) её приращение больше приведенного тепла, а при равновесии оно равно приведенному теплу. Энтропия характеризует меру бесполезности тепла и меру беспорядка в системе. Величена изменения энтропии характеризует ту часть энергии, которую можно превратить только в тепло и нельзя превратить в полезную работу. Система находится в устойчивом равновесии, если изменение энтропии равно нулю.

Заключение.

Использование законов термодинамики является необходимой составной частью современных минералогических исследований. Оно определило успехи в изучении процессов кристаллизации магм, закономерностей гидротермального минералообразования явлений метасоматоза и метаморфизма. Из всех термодинамических потенциалов наиболее употребительны в геологии энтальпия и потенциал Гиббса.

Энтальпия дает возможность подсчитать общий тепловой эффект реакции при постоянном давлении, определить энергетическую вероятность протекания процессов, идущих при постоянном давлении, температуре. Использование термохимии в минералогии расчет энергетического эффекта полного процесса с учетом всех участвующих в нем веществ. В природе равно возможны как экзотермические, так

скачать реферат
1 2 3

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы