Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Электромагнитные поля и волны

скачать реферат

такие точки, в которых разность фаз складываемых колебаний равна величине , где k целое число, т.е. волны (от разных источников) приходят в такие точки в фазе. В них будет наблюдаться устойчивое, неизменно продолжающееся все время усиление колебаний частиц. Найдутся в пространстве, где распространяется несколько волн, и такие точки, где разность фаз будет равна , т.е. волны приходят в эти точки в противофазе. В таких точках пространства будет наблюдаться устойчивое ослабление колебаний частиц. Устойчивая интерференционная картина возникает только при наложении таких волн, которые имеют одинаковую частоту, постоянную во времени разность фаз в каждой точке пространства. Волны, удовлетворяющие этим условиям и источники, создающие такие волны, называются когерентными. Плоские синусоидальные волны, частоты которых одинаковы, когерентны всегда. 2. Запишем условия максимумов и минимумов при интерференции. Когерентные точечные источники и испускают волны по всем направлениям. До точки наблюдения М расстояние от первого источника , а от второго - . Колебания точки М под действием волн от двух источников и описываются уравнениями: , . Амплитуда результирующего колебания в точке М определится следующим образом (см. раздел «Сложение колебаний»): . Амплитуда колебаний точки М максимальна (), если , где Величина называется разностью хода двух волн. Условие максимума при интерференции имеет вид: . Если целое число волн укладывается на разности хода двух волн, то при их сложении наблюдается интерференционный максимум. Амплитуда колебаний точки М минимальна (), если , (). Условие минимума при интерференции имеет вид: . Если нечетное число полуволн укладывается на разности хода двух волн, то при их сложении наблюдается интерференционный минимум. 3. Простейший случай интерференции наблюдается при наложении бегущей и отраженной волн, что приводит к образованию стоячей волны. Уравнения бегущей и отраженной волны имеют вид: , Суммарное смещение частицы среды, находящейся на расстоянии y от источника колебаний, равно сумме смещений и : . Это и есть уравнение стоячей волны. Величина - амплитуда, а () - фаза стоячей волны. Можно сказать, что частицы в стоячей волне имеют одну фазу колебаний. Амплитуда колебаний частиц в стоячей волне зависит от их координат (расстояний до источника колебаний), но не зависит от времени. Знак модуля поставлен в формуле для амплитуды стоячей волны, потому что амплитуда величина положительная. В стоячей волне есть точки, которые все время остаются неподвижными. Такие точки называются узлами смещения, их положение определяется из условия: , отсюда следует . Выполнение этого соотношения будет при условии для Итак, координаты узлов задаются формулой: . Расстояние между двумя соседними узлами равно . Точки среды, колеблющиеся с наибольшей амплитудой, называются пучностями стоячей волны, их положение (координаты) определяются соотношением: . Это уравнение можно получить из условия максимума амплитуды , т.е. . Последнее соотношение выполняется при значениях аргумента (). Расстояние между двумя соседними пучностями равно . 4. Изменение фазы волны при ее отражении. Как отмечалось ранее, стоячая волна образуется при сложении бегущей и отраженной волн. Отраженную волну можно рассматривать как бегущую волну, распространяющуюся в обратном направлении и ее можно получить при отражении бегущей волны от границы двух сред. Для синусоидальных волн это означает, что при отражении от более плотной среды фаза волны скачком изменяется
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




на радиан, а при отражении от менее плотной среды фаза волны не изменяется. Изменение фазы на радиан соответствует появлению дополнительного хода луча, равного .

Глава 2. Звуковые волны. 1.Важным видом продольных волн являются звуковые волны. Так называются волны с частотами 17 20000 Гц. Учение о звуке называется акустикой. В акустике изучаются волны, которые распространяются не только в воздухе, но и в любой другой среде. Упругие волны с частотой ниже 17 Гц называются инфразвуком, а с частотой выше 20000 Гц ультразвуком. Звуковые волны упругие колебания, распространяющиеся в виде волнового процесса в газах, жидкостях, твердых телах. 2. Избыточное звуковое давление. Уравнение звуковой волны. Уравнение упругой волны позволяет вычислить смещение любой точки пространства, по которому проходит волна, в любой момент времени. Но как говорить о смещении частиц воздуха или жидкости от положения равновесия? Звук, распространяясь в жидкости или газе , создает области сжатия и разряжение среды, в которых давление соответственно повышается или понижается по сравнению с давлением невозмущенной среды. Если - давление и плотность невозмущенной среды (среды, по которой не проходит волна), а - давление и плотность среды при распространении в ней волнового процесса, то величина называется избыточным давлением. Величина есть максимальное значение избыточное давление (амплитуда избыточного давления). Изменение избыточного давления для плоской звуковой волны (т.е. уравнение плоской звуковой волны) имеет вид: , где y расстояние от источника колебаний точки, избыточное давление в которой мы определяем в момент времени t. Если ввести величину избыточной плотности и ее амплитуды так же, как мы вводили величину избыточного звукового давления, то уравнение плоской звуковой волны можно было бы записать так: . 3. Объективные и субъективные характеристики звука. Само слово «звук» отражает два различных, но взаимосвязанных понятия: 1)звук как физическое явление; 2)звук то восприятие, которое испытывает слуховой аппарат (человеческое ухо) и ощущения, возникающие у него при этом. Соответственно характеристики звука делятся на объективные, которые могут быть измерены физической аппаратурой, и субъективные, определяемые восприятием данного звука человеком. К объективным (физическим ) характеристикам звука относятся характеристики, которые описывают любой волновой процесс: частота, интенсивность и спектральный состав. В таблицу 3 включены сравнительные данные объективных и субъективных характеристик. Таблица 3. Субъективные ХарактеристикиОбъективные характеристикиВысота звукаВысота звука определяется частотой волныТембр (окраска звука)Тембр звука определяется его спектромГромкость (сила звука)Сила звука определяется нтенсивностью волны (или квадратом ее амплитуды)Остановимся на некоторых определениях. Частота звука измеряется числом колебаний частиц среды, участвующих в волновом процессе, в 1 секунду. Интенсив?ность волны измеряется энергией, переносимой волной в единицу времени через единичную площадь (расположенную перпендикулярно направлению распространению волны).Спектральный состав (спектр) звука указывает из каких колебаний состоит данный звук и как распределены амплитуды между отдельными его составляющими. Различают сплошные и линейчатые спектры. Для субъективной оценки громкости используются величины, называемые уровнем силы звука и уровнем громкости. Все акустические величины и их размерности в СИ приведены в приложении.Глава 3. Электромагнитные

скачать реферат
1 2 3 4

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы