Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Цепные дроби

скачать реферат

дробь и кусок разложения до остаточного числа . Имеем

, откуда видно, что вычисление по формально производится таким же образом, как вычисление по с тем лишь отличием, что в первом случае заменяется на , а во втором заменяется на . Поэтому на основании формулы можно сделать вывод о справедливости следующего важного соотношения . (5) По этой причине мы пишем также , хотя не является здесь целым положительным числом. При помощи формулы (5) можно вывести следующую теорему и расположении подходящих дробей разложения .

Теорема: Действительное число всегда находится между двумя соседними подходящими дробями своего разложения, причем оно ближе к последующей, чем к предыдущей подходящей дроби. Доказательство: Из формулы (5) следует

Но , , так что 1) () и () имеют одинаковый знак, а это значит, что находится между и ; 2) , то есть ближе к , чем к . Теорема доказана.

Так как , то , и так далее; отсюда приходим к следующему заключению о взаимном расположении подходящих дробей: 1) больше всех подходящих дробей нечетного порядка и меньше всех подходящих дробей четного порядка; 2) подходящие дроби нечетного порядка образуют возрастающую последовательность, а четного порядка убывающую (в случае иррационального указанные последовательности являются бесконечными), то есть

(в случае рационального ).

Учитывая то, что при , вследствие чего , переходим к дальнейшему выводу, что в случае иррационального сегменты , , … образуют стягивающуюся последовательность, которая, как известно, должна иметь единственную общую точку, являющуюся общим пределом последовательностей , , … и , , … . Но так как принадлежит всем сегментам последовательности, то и совпадает с указанной точкой, так что . Итак, мы имеем следующий важный результат: бесконечная последовательность подходящих дробей , которая возникает при разложении иррационального , сходится к , колеблясь около него. Или: иррациональное действительное равно пределу последовательности подходящих дробей своего разложения в бесконечную непрерывную дробь (процессом выделения целой части).

1.2 Сходимость правильных бесконечных цепных дробей.

Теперь покажем, что сходящейся является последовательность подходящих дробей не только такой бесконечной непрерывной дроби, которая возникает при разложении иррационального числа , но и любой бесконечной непрерывной дроби , где , а - произвольно выбранные целые положительные числа. Но для этого мы заново исследуем взаимное расположение подходящих дробей. С этой целью рассмотрим формулы: (1) и (2), которые справедливы для любой бесконечной непрерывной дроби. 1. Формула (1) показывает, что любая подходящая дробь четного порядка больше двух соседних подходящих дробей, у которых порядок на единицу меньше или больше, чем у нее, то есть и . Согласно этому и расположены слева от , и слева от и так далее. 2. Формула (2) показывает, что расстояние между соседними подходящими дробями при увеличении k убывает. Действительно, так как , то

3. Согласно этому свойству ближе к , чем , а так как и находятся слева от , то <.

Из этого следует, что подходящая дробь , которая, как и , расположена справа от , ближе к , чем к , то есть <. Подходящие дроби дальнейших порядков располагаются таким же образом. Итак, подходящие дроби нечетного порядка увеличиваются с ростом порядка, а подходящие дроби четного порядка убывают с ростом порядка; при этом все подходящие дроби нечетного порядка меньше
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




всех подходящих дробей четного порядка, то есть <<…<<…<<…<< при любых k и . Так как , то пары подходящих дробей , , … образуют стягивающуюся последовательность отрезков, которая должна иметь единственную общую точку, являющуюся общим пределом последовательностей , , … и , , …. Обозначим этот предел за , имеем , причем, очевидно, для любого k, то есть находится между любыми двумя соседними подходящими дробями. Следовательно, подходящие дроби любой бесконечной непрерывной дроби имеют некоторый предел . Этот предел принимается в качестве значения бесконечной непрерывной дроби. Говорят, что бесконечная непрерывная дробь сходится к или представляет число . Можно записать =, подразумевая при этом, что =.

1.3 Единственность представления действительного иррационального числа правильной бесконечной цепной дробью.

Исходя из результатов, которые мы получили выше, можно утверждать, что для каждого действительного иррационального существует представление в виде бесконечной непрерывной дроби. Таким представлением является разложение в бесконечную непрерывную дробь, так как предел подходящих дробей последней равен как раз . Возникает вопрос, сколько представлений действительного иррационального в виде бесконечных непрерывных дробей существует вообще? Покажем, что только одно. Другими словами: представление действительного иррационального в виде бесконечной непрерывной дроби всегда является разложением с помощью выделения целой части. Докажем это важное утверждение. Пусть действительное иррациональное представлено бесконечной непрерывной дробью , то есть =. Назовем бесконечную непрерывную дробь остатком данной дроби порядка k. Так как любая бесконечная непрерывная дробь представляет некоторое действительное число, то это утверждение относится также и к остатку . Обозначим его через , =, то есть =. Аналогично =, то есть =. Из соотношения получаем , то есть = (1). Так как при , то все >1, а <1; следовательно, , то есть (2). Но так как , то и, ввиду равенства (1) равно остаточному числу второго порядка для , то есть . Тогда далее , а и так далее. Вообще из следует , а . Элементы данной бесконечной непрерывной дроби получаются из его значения последовательным выделением целой части, что и требовалось доказать. Вместе с тем мы установили, что остаток бесконечной непрерывной дроби = порядка k+1 совпадает с ее остаточным числом порядка k+1 . Исследования этого параграфа приводят нас к следующему основному результату: каждое иррациональное действительное число единственным образом представляется бесконечной цепной дробью вида и, наоборот, каждой бесконечной цепной дроби соответствует единственное иррациональное действительное число, которое она представляет. Поэтому множество всех действительных чисел взаимно однозначно отображается на множестве всех непрерывных дробей (если условиться, что для конечных непрерывных дробей берется последнее ). При этом рациональным числам соответствуют конечные непрерывные дроби, а иррациональным бесконечные дроби.

§2. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя.

Рациональные числа образуют счетное множество, в то время как множество иррациональных чисел несчетно. В этом смысле можно сказать, что основную массу всех действительных чисел составляют иррациональные числа. Применение иррациональных чисел в практике обычно осуществляется заменой данного иррационального числа некоторым рациональным числом, мало отличающимся в пределах

скачать реферат
1 2 3 4 5 6 ...    последняя

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы