Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Билеты по геометрии за 11 класс

скачать реферат

Билет №16

1. Конус (формулировки и примеры) 2. Признак параллельности прямой и плоскости 1.рассмотрим окружность L с центром О и прямую ОР , перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим с отрезом в т. Р Поверхность, образованная этими отрезками называется конической поверхностью а сами отрезки образующими конической поверхности. Тело, ограниченное конической поверхностью и круг-ом с границей L, называется конусом .Коническая по-верх называется боковой поверхностью конуса, а круг - снованием конуса . Т.Р называется вершиной конуса , а образующие конической поверхности образующими конуса. Все образующие равны друг другу . ОР , прохо-дящая через центр основания и вершину , называется Осью конуса . Ось конуса ? к плоскости основания. От-резок ОР называется высотой конуса. Конус можно получить и вращением прямоуголь-ным треугольником вокруг одного из его катетов. При этом боковая поверхность образуется с помо-щью гипотенузы. Рассмотрим сечения конуса. Если секущая ось проходит через ось , то сечение пред-ставляет собой треугольник , и называется осевым сечением. Если секущая плоскость ? к оси ОР конуса, о сечене пред-ставляет собой круг с центром в т.О1 , расположенным на оси конуса. R1 этого круга равен РО1/РО r , где r- радиус основания конуса , что легко усмотреть из подобия ?РОМ??РО1М1

Билет №7

1. Угол между скрещивающимися прямыми 2. Площадь боковой поверхности цилиндра. 1. Пусть АВ и СD скрещивающиеся прямые . Возьмем произвольную т. М1 пространства и проведем через нее прямые А1В1 и С1D1 , соответственно параллельн АВ и СD Если ? между прямыми А1В1 и С1D1 =?, то будем говорить , что ? между скрещивающимися прямыми АВ и СD=?. Докажем теперь, что ? между прямыми не зависит от выбора т. М1 . Действительно , возьмем любую т. М2 и проведем прямые А2В2и С2D2 соответственно парал. АВ и СD Т.к А1В1? А2D2 , С1D1? C2D2 , то стороны углов с вершинами в т.М1и М2 попарно сонаправлены ( ?А1М1С1 и ?А2М2С2 , ?А1М1D1 и?А2М2D2 ) потому эти ? равны , ? что ? между А2В2и С2D2 так же =?. В качестве т М можно взять любую точку на одной из скрещивающихся прямых . Например на СD отметить т М и через нее провести А'B' параллельные АВ .Угол между прямыми A'B'и CD= ?

2. Терема: S боковой поверхности цилиндра равна произведению длинны окружности основания на высоту Разрежем боковую поверхность по образующей АВ и развернем т.о , что все образующие оказались в одной плоскости ? . В результате в пл ? получится прямоугольник АВВ'А' . Стороны АВ и А'В' два края разреза боковой поверхности цилиндра по образующей АВ . Это прямоугольник называется разверткой боковой поверхности цилиндра . основание АА' прямоугольника является разверткой окружности основания цилиндра , поэтому АА'=2?r , AB-h, где г- радиус цилиндра , h- его высота . за S бок цилиндра принято считать S её развертки . Т.к S прямоугольника АВВ'А'= АА'ВА = 2?rh то, для вычисления S бок цилиндра радиуса к и высоты h формула S бок=2?rh

Билет № 15

1. Цилиндр (формулировки и примеры) 2. Признак параллельных прямых. 1. Рассмотрим две параллельные плоскости ? и ? и окружность L с центром О радиуса r , расположенную в пл ?. Отрезки прямых заключенных между плоскостями образуют цилиндрическую поверхность. Сами отрезки называются образующими цилиндрической поверхности По построению концов образующих расположенных в пл ? заполним окружность L1. Тело ограниченное цилиндрической поверхностью и двумя кругами с
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




границами L и L1 , называется цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги - основаниями цилиндра . Образующие цилиндрической поверхности называются образующими цилиндра , прямая ОО1- осью цилиндра. Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон. Сечение цилиндра , проходящее через ось , представляет собой прямоугольник , две стороны которого образующие , а 2 другие диаметры оснований цилиндра , такое сечение называется осевым. Если секущая плоскость ? к оси цилиндра , то сечение является кругом. Цилиндры так же могут быть и наклонными или иметь в своем основании параболу .

Параллельность прямых а и b обозначается так: а||b. Докажем теорему о параллельных прямых. Т е о р е м а. Через любдю точку пространства, не лежащую на данной прямой, проходит прямая, параллелькая данной, и притом только одна. Д-во. Рассмотрим прямую a и т М, не лежащую на этой прямой. Через прямую a и т М проходит пл, и притом только одна . Обозначим эту плоскость буквой ?. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости ?. Ho в плоскости ?, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b единственная прямая, проходящая через т М параллельно прямой а. Теорема доказана.

Билет № 17

1. Сфера, шар( формулировки, примеры) 2. Признак параллельности плоскостей. Определение. Сферой называется поверхность, состоящая из всех точен. пространства, расположенных на данном расстоянии or данной точки Данная точка называется центром сферы (т О), а данное расстояние радиусом сферы. Радиус сферы часто обозначают буквой R Люб-ой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы.Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы. Очеви-дно, диаметр сферы равен 2R Отметим, что сфера может быть полу-чена вращением полуокружности вокруг ее диаметра Тело, ограни-ченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Очевидно, шар радиуса R с центром О содержит все точки пространства, кот. Расположены от точки О на расстоянии, не превышающем H (вклю-чая и точку О), и не содержит других точек.

2.Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, другой плоскости, то эти плоскости праллельны. Д-во. Рассмотрим две плоскости ? и ?. В плоскости ? лежат пересека-ющиеся в точке М прямые a и b, а в плоскости ? прямые a1 и b\, причем a||a1 и b||b1. Докажвм, что a||b. Прежде всего отметим, что по признаку параллельности прямой и плоскости a||? и b||?. Допустим, что плоскости ? и ? не параллельны. Тогда они пересекаются по некоторой прямой с. Мы получили, что плоскость a проходит через прямую а, па-раллельную плоскости ?, и пересекает плоскость по прямой с. Отсюда следует, что a||с. Но плоскость a проходит также через прямую b, параллельную плоскости ?. Поэтому b||c. Т.о, через т М проходят две прямые a и b, параллельные прямой с. Но это невозможно, т.к по теореме о параллельных прямых через точку М проходит только одна прямая, параллельная прямой с. Значит, наше допущение неверно и ?|| ?. Теорема доказана.

Билет № 14

1. Пирамида(формулировка , примеры) 2. Существование прямой, параллельной

скачать реферат
1 2 3 4

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы