Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Кривые и поверхности второго порядка

скачать реферат

ЭЛЛИПС.

Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; требуется, чтобы эта постоянная была больше расстояния между фокусами. Фокусы эллипса принято обозначать через F1 и F2. Пусть Мпроизвольная точка эллипса с фокусами F1 и F2. Отрезки F1М и F2М (так же как и длины этих отрезков) называются фокальными радиусами точки М. Постоянную сумму фокальных радиусов точки эллипса принято обозначать через 2а. Таким образом, для любой точки М эллипса имеем: F1М + F2М = 2а. Расстояние F1 и F2 между фокусами обозначают через 2с. Пусть дан какой-нибудь эллипс с фокусами F1, F2. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим, далее, через r1 и r2 расстояния от точки М до фокусов (r1 = F1М, r2 = F2М). Точка М будет находиться на данном эллипсе в том и только в том случае, когда r1 + r2 = 2а. Чтобы получить искомое уравнение, нужно в равенстве заменить переменные r1 и r2 их выражениями через координаты х, у. Заметим, что так как F1 F2 = 2с и так как фокусы F1 и F2 расположены на оси Ох симметрично относительно начала координат, то они имеют соответственно координаты (с; 0) и (+с; 0); приняв это во внимание находим:

Заменяя r1 и r2, получаем:

Это и есть уравнение рассматриваемого эллипса, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на этом эллипсе. Возведём обе части равенства в квадрат, получим:

или

Возводя в квадрат обе части последнего равенства, найдем: а2х2 2а2сх + а2с2 + а2у2 = а4 2а2сх + с2х2 , откуда (а2с2)х2 + а2у2 = а2(а2с2). Здесь мы введем в рассмотрение новую величину ; а>с, следовательно, а2с2>0 и величина bвещественна. b2 = a2c2, тогда b2x2 + a2y2 = a2b2 , или . Это уравнение называется каноническим уравнением эллипса. Уравнение , определяющее эллипс в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, эллипс есть линия второго порядка. Эксцентриситетом эллипса называется отношение расстояния между фокусами этого эллипса к длине его большой оси; обозначив эксцентриситет буквой е, получаем: . Так как с
Предположим, что рассматриваемый эллипс не является окружностью, т. е. что а?b и, следовательно, е=0. Предположим еще, что этот эллипс вытянут в направлении оси Ох, т. е. что а>b. Две прямые, перпендикулярные к большой оси эллипса и расположенные симметрично относительно центра на расстоянии от него, называются директрисами эллипса. Уравнения директрис в выбранной системе координат имеют вид и . Первую из них мы условимся называть левой, вторуюправой. Так как для эллипса е<1, то . Отсюда следует, что правая директриса расположена правее правой вершины эллипса; аналогично, левая директриса расположена левее его левой
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




вершины. Частным случаем эллипса является окружность. Её уравнение имеет вид: х2 + у2 = R2.

ГИПЕРБОЛА.

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению; кроме того, требуется, чтобы она была меньше расстояния между фокусами и отлична от нуля. Фокусы гиперболы принято обозначать через F1 и F2, а расстояние между нимичерез 2с. Пусть Мпроизвольная точка гиперболы с фокусами F1 и F2. Отрезки F1М и F2М (так же, как и длины этих отрезков) называются фокальными радиусами точки М и обозначаются через r1 и r2 (r1= F1М, r2= F2М). По определению гиперболы разность фокальных радиусов ее точки М есть постоянная величина; эту постоянную принято обозначать через 2а. Пусть дана какая-нибудь гипербола с фокусами F1 и F2. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у, а фокальные радиусы F1М и F2М через r1 и r2. Точка М будет находиться на (данной) гиперболе в том и только в том случае, когда r1 r2= ±2а. Так как F1 F2=2с и так как фокусы F1 и F2 расположены на оси Ох симметрично относительно начала координат, то они имеют соответственно координаты (с; 0) и (+с; 0); приняв это во внимание находим: , . Заменяя r1 и r2, получаем: . Это и есть уравнение рассматриваемой гиперболы, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на гиперболе. Возведём обе части равенства в квадрат; получим: , или . Возводя в квадрат обе части этого равенства, найдем: c2x2 2a2cx + a4 = a2x2 2a2cx + a2c2 + a2y2 , откуда (c2 a2)x2 a2y2 = a2(c2 a2) . Здесь мы введем в рассмотрение новую величину ; с>a, следовательно, с2а2>0 и величина bвещественна. b2= с2а2, тогда b2x2 a2y2 = a2b2 , или . Уравнение , определяющее гиперболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, гипербола есть линия второго порядка. Эксцентриситетом гиперболы называется отношение расстояния между фокусами этой гиперболы к расстоянию между ее вершинами; обозначив эксцентриситет буквой е, получим: . Так как для гиперболы с>a, то е>1; т. е. эксцентриситет каждой гиперболы больше единицы. Заметив, что c2 = a2+ b2, находим: ; отсюда и . Следовательно, эксцентриситет определяется отношением , а отношение в свою очередь определяется эксцентриситетом. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше е21, тем меньше, следовательно, отношение ; значит, чем меньше эксцентриситет гиперболы, тем более вытянут ее основной прямоугольник (в направлении оси, соединяющей вершины). В случае равносторонней гиперболы a=b и е=?2. Рассмотрим какую-нибудь гиперболу и введем декартову прямоугольную систему координат так, чтобы эта гипербола определялась каноническим уравнением . Две прямые, перпендикулярные к той оси гиперболы, которая ее пересекает, и расположенные симметрично относительно центра на расстоянии от него, называются директрисами гиперболы. Уравнения директрис в выбранной системе координат имеют вид и . Первую из них мы условимся называть левой, вторую правой. Так как для гиперболы е >1, то . Отсюда следует, что правая директриса расположена между центром и правой вершиной гиперболы; аналогично, левая директриса расположена между центром и левой вершиной.

скачать реферат
1 2

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы