Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Прецизионные сплавы

скачать реферат

ВВЕДЕНИЕ. В конце прошлого века французский исследователь Ч.Гийом [ 1, с. 35] обнаружил в системе железо никель сплавы, обладающие тепловым расширением на целый порядок ниже расширения составляющих компонентов. При увеличении концентрации железа в сплаве происходит снижение температурного коэффициента линейного расширения а; особо резкое его падение начинается при содержании железа более 50 %. Полюс самого низкого а соответствует содержанию 65 % (ат.) Fе в сплаве. Этот сплав был открыт Гийомом в 1886 г. и назван инваром из-за очень низкого температурного коэффициента линейного расширения. Аномалия свойств, связанная с инварным эффектом, используется при разработке сплавов с заданным значением а. Сплавы инварного класса имеют аномалии большинства физических свойств. Эти особенности инварных сплавов позволяют создавать материалы с уникальными характеристиками. Необычный характер изменения свойств в сплавах на основе железо никель широко используется в различных отраслях промышленности. В метрологии, криогенной, радиоэлектронной технике и геодезии часто не могут обойтись без сплавов со значениями а менее 2 10-6 К. В этих случаях значения а, близкие к нулевому, диктуются условиями эксплуатации, требованиями обеспечить высокую точность измерительного инструмента, стабильность эталонов длины, высокую устойчивость работы газовых лазеров, эксплуатационную надежность трубопроводов для транспортировки сжиженных газов и т.п. Сплавы для соединения с диэлектриками (стекло, керамика, слюда и т.п.) должны иметь определенное значение и. Надежные соединения различных по свойствам материалов можно создать только при согласовании а в технологическом и эксплуатационном интервале температур. Сплавы с заданным значением а для указанных целей также созданы на основе инварных композиций. В приборах автоматического терморегулирования широко используют термо-биметаллы. Пассивная составляющая термобиметаллов является сплавом с а, близким к нулю, активной составляющей служат сплавы с высоким значением а. Чем больше разница в тепловом расширении активной и пассивной составляющих, тем выше чувствительность термобиметалла. Среди большого числа сплавов с заданным а преобладающая часть создана на основе сплавов системы FeNi в области концентраций инварного состава. По этой причине за последние 1520 лет изучению железоникелевых сплавов посвящены многие сотни работ, выдвинуты десятки гипотез для объяснения природы аномального характера свойств сплавов инварного класса. И, несмотря на большие усилия, приложенные учеными многих стран в исследованиях инварного эффекта, вопрос о природе инварности все еще остается нерешенным. Таким образом, инварность превратилась в проблему. В этой связи не случайно, если еще не учитывать то, что инварные сплавы представляют интерес в теоретическом отношении, число публикаций по этому вопросу ежегодно составляет многие десятки работ.

Элинварные и механические свойства мартенситно-аустенитных сплавов Известно большое число элинварных аустенитных сплавов, содержащих 4050 % Ni, у которых с повышением температуры модуль упругости практически не изменяется (температурный коэффициент модуля упругости близок или равен 0) [1, 2]. Эти сплавы имеют относительно невысокий уровень механических свойств в недеформированном состоянии . Повышение предела упругости сплавов до 10001100 Н/мм2 достигается лишь после холодной пластической деформации с высокими степенями (9098 %) и реализуется лишь в небольших сечениях (тонкая лента, проволока).
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




Применение высокопрочных мартенситных сплавов для этих целей невозможно, так как у них нет элинварного эффекта. Проблема решается при использовании мартенситно-аустенитных сплавов, обладающих повышенными механическими свойствами (по сравнению с чисто аустенитными сплавами) и высокими элинварными характеристиками, близкими к свойствам аустенит-ных сплавов этого назначения [3, 4]. В качестве основы для исследования мартенситно-аустенитных сплавов выбрана система FeNi, обеспечивающая получение мартенситной структуры после закалки, а также протекание мартенситно-аустенитного превращения и дисперсионного твердения. Для интенсификации процесса старения сплавы легировали титаном [5, 6]. Исследуемые сплавы не содержат кобальт, а введение небольшого количества молибдена (около 1 %) обусловлено его высокой поверхностной активностью, предотвращающей зерногоаничное выделение карбонитридов и интерметаллидов. Исследовали бескобальтовые мартенситностареющие сплавы Fe (2025) % Ni, легированные небольшими добавками Ti и Мо. Легирование сплавов 2025 % Ni связано с необходимостью получения при термической обработке стабилизированного аустенита. Выплавку сплавов проводили вакуумно-индукционным способом. Сливки ковали на прутки круглого (диаметром 8 мм) и квадратного (14х14 мм) сечения, из которых вырезали образцы для определения механических и элинварных свойств. Образцы подвергали закалке или закалке и холодной пластической деформации со степенью обжатия 3070 %, а затем старению в интервале 4506500С в течение 2 ч. Определяли механические свойства образцов.

6, ф. Температурный коэффициент частоты ТКЧ оценивали по изменению частоты собственных продольных колебаний образца при электромагнитном возбуждении на установке "Эластомат 1.024" (в интервале температур 40-+60 °С). Температурные коэффициенты модуля упругости и частоты связаны между собой зависимостью: = 2 - где ТКМУ; ТКЧ; температурный коэффициент линейного расширения (ТКЛР). Количество стабилизированного аустенита после нагрева до разных температур определяли рентгеноструктурным методом в железном К-излучении. Для изучения структуры и морфологии образующихся при нагреве упрочняющих и интерметаллидных фаз, а также кристаллов аустенита использован электронно-микроскопический метод исследования. Исследовали влияние температуры старения на твердость сплавов и количество стабилизированной -фазы. Установлено (рис. 1), что твердость достигает максимума после нагрева до 480-500 оС. При более высоких температурах наблюдается разупрочнение, связанное с образованием -фазы и укрупнением выделившихся частиц интерметаллидов. Для получения в структуре исследованных сталей 40 60 % стабилизированного аустенита, обеспечивающего эффект элинварности, необходимо их подвергать выдержке при 525650 оС в течение 12 ч. Следует отметить, что в структуре сплавов Н21ТМ и Н23Т2М содержится менее 40 % аустенита, что связано с меньшим количеством никеля (21 %) в сплаве Н21ТМ и с повышенным содержанием титана в сплаве Н23Т2М. Под действием титана в последнем сплаве происходит интенсивное обеднение твердого раствора по никелю за счет выделения при старении никельсодержащего интерметаллида. Сплав Н25ТМ недостаточно упрочняется при старении, что обусловлено низкой температурой a - у-превращения и малым содержанием титана. В связи с этим в дальнейшем исследование проводили на сплавах Н23ТМ и Н25Т2М, в которых соотношение степени упрочнения и количества -фазы после старения оптимально. Эффективным способом повышения

скачать реферат
1 2 3 4 ...    последняя

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы