Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Физика микромира

скачать реферат

микроскоп позволяет получать разрешения деталей с размерами от 120 (для фотоэмиссии) до 270 А (для вторичной эмиссии). Вызывает интерес сообщение о том, что голландская фирма Philips вносит ряд усовершенствований в микроскоп типа EM-300, которые позволят довести практическую разрешающую способность до теоретического предела (!). Правда, о существе этих усовершенствований пока не сообщается. Важность проблемы улучшения разрешающей способности в электронной микроскопии, приближение ее к теоретическому пределу стимулировала проведение целого ряда исследований в этой области. Из многочисленных предложений и идей, зачастую остроумных и весьма перспективных, остановимся на идеях, высказанных английским физиком Габором, получивших в последние годы широкое развитие в оптике, радиофизике, акустике, особенно в связи с созданием оптических квантовых генераторов (лазеров). Речь идет о так называемой голографии, о которой известно сейчас не только специалистам, но и всем тем, кто интересуется новейшими достижениями физики. Вместе с тем не все, наверное, знают, что первые работы Габора по голографии, проведенные еще в «долазерный» период (1948-1951), были поставлены и выполнены именно в связи с задачей повышения разрешающей способности в электронной микроскопии. Сущность предлагавшегося метода сводилась к следующему. Монохроматический поток электронов, т.е. поток, содержащий электроны с одинаковыми скоростями, освещает объект исследования (по схеме просвечивающего или теневого микроскопа). При этом происходит дифракция электронов на объекте (вспомним волновые свойства электронов!). Обычно в электронном микроскопе пучок, претерпевший дифракцию на объекте, поступает в систему электронных линз, формирующих изображение и обеспечивающих нужное большое увеличение. Однако эти же линзы, как мы уже отмечали, являются источниками трудно устранимых искажений, препятствующих достижению теоретического разрешения. В новом методе предлагалось фиксировать результат дифракции электронов фотографически в виде дифракционной картины и подвергать эту картину последующей обработке с помощью оптических методов, где получение нужных усилений может быть достигнуто с меньшими искажениями. В таком двухступенчатом процессе получения изображений основное увеличение достигается за счет перехода от «электронных» длин волн к оптическим. При этом следует отметить, что обрабатываемая оптическими методами картина дифракции практически не имеет сходства с объектом исследования. Однако с помощью светового излучения (видимого) по этой картине в несложном оптическом устройстве можно восстановить изображение исследуемого объекта. Для этого источник излучения должен посылать монохроматические когерентные волны, т.е. должен обладать теми свойствами, которые так ярко проявляются у оптических квантовых генераторов. Заметим, что, образно говоря, в этом двухступенчатом процессе мы фиксируем, «замораживаем» фронт электронных волн и потом воспроизводим его вновь в виде фронта световой волны в значительно большем масштабе, используя при этом различие длин волн света и электронов (это соотношение, например, может быть порядка 6000А/0,030А 200000). В таком «безлинзовом», а потому и не вносящим искажений увеличении и заключается основное достоинство метода голографии в электронной микроскопии. К числу новых направлений следует также отнести область микроскопии, использующую вместо электронов другие виды микрочастиц, тяжелых по сравнению с электронами. В этом случае дифракционный предел,
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




предсказываемый теорией, смещен в более далекую область малых размеров. Примером такого направления микроскопии является развивающаяся автоионная микроскопия. В автоионных микроскопах, используемых при исследовании физики поверхностных явлений, главным образом в металлах, оказывается возможным видение отдельных атомов. Методика автоионной микроскопии весьма своеобразна; эта область претерпевает бурное развитие. Как же далеко мы сможем еще продвинуться по пути раскрытия тайн микрообъектов? Мы видим, что за исторически короткий срок, используя новейшие достижения физики и радиоэлектроники, электронная микроскопия превратилась в мощное орудие исследования природы. Обозримое будущее этой области науки связано с реализацией дерзновенных проектов создания таких приборов, которые позволят «приблизить» и сделать зримым многообразный и красочный микромир. Далеко не всё ещё ясно на этом пути, на котором постоянно возникают всё более и более сложные научно-технические и технологические проблемы. Современные приборы микроскопии являются несравненно более сложными устройствами, чем микроскопы недавнего прошлого. Уже сейчас мы сталкиваемся с очевидным фактом: приборы микроскопии становятся всё более сложными и громоздкими по мере проникновения в ранее недосягаемые тайны мира малых объектов. Дальнейшее усложнение этих приборов, увеличение затрат на их изготовление определяются необходимостью разрешения новых всё более сложных проблем. Здесь уместно провести аналогию с развитием экспериментальной ядерной физики, где получение информации о свойствах микрочастиц вещества, из которых состоят ядра атомов, связано с созданием сложнейших и, как правило, чрезвычайно громоздких и дорогих приборов и установок. Получение информации, раскрывающей тайны микромира, оплачивается высокой ценой. Однако происходящие при этом затраты интеллектуальных и материальных ресурсов, как показывает опыт истории науки, безусловно, окупаются теми возможностями, которые открываются при этом в технике, физике, химии, биологии и медицине. Литература:

· Рукман Г.И. , Клименко И.С. Электронная микроскопия. М., Знание, 1968. · Савельев И.В. Курс физики, т.3. М., Наука, 1989. Рисунки:

скачать реферат
первая   ... 6 7 8 9

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы