Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Двойственная природа света, ее проявления. Шкала электромагнитных волн

скачать реферат

световых волн в плоскости, перпендикулярной направлению распространения света, становится анизотропным, т. е. неодинаковыми относительно плоскости, проходящей через луч и ось турмалина. Поэтому способность такого света проходить через вторую пластинку турмалина зависит от ориентации оптической оси этой пластинки относительно оптической оси первой пластинки. Такой анизотропии не было в пучке, идущем непосредственно от фонаря (или солнца), ибо по отношению к этому пучку ориентация турмалина была безразлична. Можно объяснить все наблюдавшиеся явления, если сделать следующие выводы. 1) Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны). 2) Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно оси (например, параллельно оси). 3) В свете фонаря (солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что одно направление не является преимущественным. Я буду в дальнейшем называть свет, в котором в одинаковой доле представлены все направления поперечных колебаний, естественным светом. Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Действительно, как бы ни был ориентирован турмалин, в естественном свете всегда кажется одна и та же доля колебаний, направление которых совпадает с направлением, пропускаемых турмалином. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет называется линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскость поляризации. Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через нее пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т. е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Это имеет место, когда пластинки турмалина, как говорят, скрещены, т. е. их оси составляют угол 90. Наконец, если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут попущены лишь частично. Существуют кристаллы, еще сильнее задерживающие один из поляризованных лучей, чем это происходит в турмалине (например, кристалл йодистого хинина), так что кристаллическая пленка толщиной в десятую долю миллиметра и даже тоньше практически полностью отделяет один из поляризованных лучей. Фотоэффект Световая волна, падающая на тело, частично отражается от него, частично походит насквозь, частично поглощается. В большинстве случаев энергия поглощенной световой волны целиком переходит во внутреннюю энергию вещества, что приводит к нагреванию тела. Нередко, однако, известная часть этой энергии
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




поглощенной энергии вызывает и другие явления. Очень важными действиями света, получившими больше практические применения, являются фотоэлектрический эффект, фотолюминесценция и фотохимические превращения. Фотоэффект явление вырывание электронов с поверхности тел под действием света. Первоначально явление фотоэффекта пытались объяснить с волновых представлений о природе света: 1) Электромагнитная волна попадает на металл. 2) Электромагнитное поле “раскачивает” электрон. 3) Когда скорость электрона становится большой, электрон вылетает. 4) Кинетическая энергия электрона прямо пропорциональна интенсивности светового потока. При подобном объяснении явления сразу обнаружились некоторые противоречия, полученные в результате экспериментов: 1) Максимальная скорость вылетевшего электрона определяется частотой падающего света на зависит от его интенсивности. 2) Величина тока насыщения (число электронов вылетевших за единицу времени) определяется интенсивности света. 3) Существует минимальная частота падающего света при которой еще наблюдается фотоэффект (так называемая “красная граница фотоэффекта”). 4) Величина тока зависит от типа материала. Фотоэффект без инерционен. Объяснить подобные явления учёные смогли лишь после предположения Планка, которое заключалось в том, что свет не только излучается порциями, но и распространяется порциями. Он же выявил зависимость между энергией одной излученной порции и частотой излучения: E = т *h ( где т - частота излучения, h постоянная Планка ). В дальнейшем при изучении однофотонного поглощения (физическая модель в которой все кванты света поглощаются материалом) был опытным путем получен закон фотоэффекта: т *h = (mv2)/2 + Aвыхода Aвыхода минимальная энергия, которую необходимо сообщить электрону, для вырывания его с поверхности металла без сообщения кинетической энергии. Данная формула смогла объяснить прошлые противоречия объяснения явления фотоэффекта: 1) Так как Aвыхода величина постоянная для данного металла, то максимальная скорость электрона зависит от частоты излучения. 2) Если частота излучения меньше частоты излучения красной границы (т *h красной границы = Aвыхода), то явления фотоэффекта не наблюдается. 3) При увеличении интенсивности света возрастает число фотонов и возрастает количество вылетевших электронов, что ведет к увеличению силы тока. Закон фотоэффекта вносит совершенно новые черты в представлении о свете. Он означает, что свет частоты т сообщает электрону энергию, равную т *h , какова бы ни была интенсивность света. При сильном свете большее количество электронов получает указанные порции энергии, при слабом меньшее, но сами порции остаются неизменно равными т *h. Таким образом, световой энергии приписывается атомистический характер; энергия света данной частоты т не может делиться на произвольные части, а проявляет себя в виде совершенно определенных равных порций “атомов световой энергии”. Для этих порций энергии установлено специальное название; они именуются световыми квантами или фотонами. Представление о световых квантах было введено Эйнштейном в 1905 г. То обстоятельство, что в большинстве оптических опытов не обнаруживается квантового характера световой энергии, не удивительно. Действительно, h очень малая величина, равная 6,6*10-34 Дж *с. Вычислим энергию кванта зеленого цвета для л =500 нм. Соответствующее т = с/ л =3*108/5*10-7 = = 6*1014 Гц и следовательно, т* h =4*10-19Дж; это очень маленькая величина. Энергия, с которой мы имеем дело в большинстве

скачать реферат
1 2 3 4 5 6

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы