Рейтинг@Mail.ru
Rambler's Top100




Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

реферат на тему: Строение и свойства вещества

скачать реферат

Министерство путей сообщения Российской Федерации Дальневосточный Государственный Университет путей сообщения

КАФЕДРА «Химия»

Курсовой проект на тему: «Строение и свойства вещества»

К.П. 1001. 1. 615

Выполнил: Глухих П.А. Проверил: Рапопорт Т.В.

г. Хабаровск 1999 Цель занятия: изучить свойства веществ в твёрдом состоянии, рассмотреть типы кристаллических решёток, сущность явления проводимости.

1.1 Характеристика вещёства в твёрдом состоянии.

Твёрдые вещества характеризуются следующими показателями: расстояния между частицами (атомами, молекулами) соизмеримы с их размерами, потенциальная энергия частиц значительно превосходит кинетическую, частицы находятся в тепловом колебательном движении. Твёрдые вещества делятся на аморфные и кристаллические.

Таблица 1.1 Общая характеристика аморфных и кристаллических веществ Аморфное состояние (стеклообразное)Кристаллическое состояние Ближний порядок расположения частиц

Изотропность физических свойств Отсутствие конкретной точки плавления Термодинамическая нестабильность (большой запас внутренней энергии) Текучесть Примеры: органические полимеры стекло, вар, янтарь и т.д.Дальний порядок расположения частиц Анизотропность физических свойств Конкретная температура плавления и кристаллизации Термодинамическая устойчивость (малый запас внутренней энергии) Обладают элементами симметрии Примеры: углерод (алмаз, графит), твёрдые соли, металлы, сплавы. Геометрическая форма кристалла это следствие его внутреннего строения, которое характеризуется определённым расположением частиц в пространстве, обуславливающим структуру и свойства данного кристалла (пространственная кристаллическая решётка). Основные параметры кристаллических решёток описаны в таблице 1.2 Таблица 1.2 Параметры кристаллической решётки (к.р.) ПараметрыОпределения1. Энергия кристаллической решётки, кДж/моль

2. Константа к.р. (d,[Ao])

3.Координационное числоЭнергия, которая выделяется при образовании 1моль кристалла из микрочастиц (атомов, молекул, ионов), находящихся в газообразном состоянии и удалённых друг от друга на расстояние, исключающее их взаимодействие Наименьшее расстояние между центрами 2-х частиц в кристалле, соединённых химической связью Число частиц, окружающих в пространстве центральную частицу, связанных с ней химической связьюВ зависимости от вида частиц, находящихся в узлах кристаллической решётки и типа связи между ними, кристаллы бывают различных типов (см. табл. 1.3). Таблица 1.3 Типы кристаллов и их свойства Тип кристалла (по типу хим. связи)Вид частиц в узлах к.р.Тип связи между частицамиОсновные свойства кристалловПримеры веществМолекулярныеНеполярные или полярные молекулыМежмолекулярные силы; водородные связиНизкая теплопроводность и электропроводимость, низкая химическая прочность и темп. плавл.; высокая летучестьТвёрдые галогены, СН4, Н2, СО2(кр.), Н2О (кр), N2(кр.)Ковалентные (атомные)Атомы одного или разных элементовКовалентные связиВысокая температура плавл., твёрдость и механ. Прочность; широкий диапазон электропроводности: от изоляторов (алмаз) и полупроводников (Ge, Si) до электронных проводников (Sn)Кристаллы простых и сложных веществ элементов 3-й и 4-й групп главных подгр. Салм, Si, Ge, Snc, SiC, AlN, BN и др.ИонныеПростые и сложн. ионыИонная св. электростатическое взаимодействиеПромежуточное положение между молекулярными и ковалентными кристаллами; как правило, хор. растворимы в полярн.
Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ




расторит.; диэлектрикиNaCl, CaF2, LiNO3, CaO и др.МеталлическиеАтомы и ионы металловМеталлическая связьКовки, пластичны; высокие тепло- и электропроводимость непрозрачность, металич. блескЧистые металлы и сплавы

1.2. Кристаллические проводники, полупроводники, изоляторы. Зонная теория кристаллов.

Все известные кристаллические вещества по величине электропроводимости подразделяются на три класса: проводники, диэлектрики (изоляторы), полупроводники (таблица 1.4).

Таблица 1.4. Деление кристаллических веществ по величине электропроводимости Класс кристаллич. ВеществаЭлектропроводность Общая характеристика ПримерыПроводники 1-го рода

Диэлектрики

ПолупроводникиВещества с металлической кристаллической решёткой, характеризующейся наличием “переносчиков тока” свободно-перемещающихся электронов

Вещества с атомной, молекулярной и реже ионной решёткой, обладающие большой энергией связи между частицами

Вещества с атомной или реже ионной решёткой, обладающие более слабой энергией связи между частицами, чем изоляторы; с ростом температуры электропроводимость растетFe, Al, Ag, Cu и др.

Салмаз, слюда, органич. Полимеры, оксиды и др. Si, Ge, B, серое олово и др.Различие в величине электропроводимости металлов, полупроводников и диэлектриков объясняет зонная теория строения твёрдого тела, основные положения которой сводятся к следующему. При образовании кристалла из одиночных атомов происходит перекрытие атомных орбиталей (АО) близких энергий и образование молекулярных орбиталей (МО), число которых равно общему числу перекрывающихся АО. С ростом числа взаимодействующих атомов в кристалле растет число разрешённых молекулярных энергетических уровней, а энергетический порог между ними уменьшается. Образуется непрерывная энергетическая зона, в которой переход электронов с более низкого энергетического уровня на более высокий не требует больших затрат энергии. Заполнение электронами МО, составляющих непрерывную энергетическую зону, происходит в порядке возрастания энергии, согласно принципу Паули. В кристалле натрия при образовании N MO, только N/2 MO будут заняты электронами, т.к. у атома Na на каждой валентной 3S АО находится по 1 электрону, а на каждой МО будет располагаться по 2е с противоположными спинами. Совокупность энергетических уровней, занятых валентными электронами, составляет валентную зону. Энергетические уровни, незаполненные электронами, составляют зону проводимости. В кристаллах проводников валентная зона находится в непосредственной близости от зоны проводимости и иногда перекрывается с ней. Е энергетический барьер близок к нулю. (см. рис.1)

Рис1. Расположение энергетических зон в кристаллах: - зона проводимости; - валентная зона; Е=запрещенная зона

Электроны валентной зоны при их незначительном возбуждении могут легко перейти на свободные энергетические уровни зоны проводимости, что обеспечивает высокую проводимость металлов. У изоляторов зона проводимости отделена от валентной зоны большим энергетическим барьером (>4эВ). Валентные электроны не могут попасть в зону проводимости даже при передаче им значительного кол-ва энергии, т.к. электроны не могут свободно перемещаться по всему объёму кристалла, проводимость в кристалле отсутствует. Ширина запрещённой зоны проводников невелика от 0.1 до 4эВ. При низких температурах они проявляют свойства изоляторов. С повышением температуры энергия валентных электронов возрастает и становится

скачать реферат
1 2 3

Не нашли нужную работу? Закажи реферат, курсовую, диплом на заказ

Внимание! Студенческий отдых и мегатусовка после сессии!


Обратная связь.

IsraLux отзывы Израиль отзывы